• 2022-09
  • 2022-08
  • 2022-07
  • 2022-06
  • 2022-05
  • 2022-04
  • 2022-02
  • 2021-03
  • 2020-08
  • 2020-07
  • 2020-03
  • 2019-11
  • 2019-10
  • 2019-09
  • 2019-08
  • 2019-07
  • br References br F M Muggia P S Braly


    [5] F.M. Muggia, P.S. Braly, M.F. Brady, G. Sutton, T.H. Niemann, S.L. Lentz, R.D. Alvarez, P.R. Kucera, J.M. Small, Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study, J. Clin Oncol. 18 (2000) 106–115.
    [13] L. Liao, J. Liu, E.C. Dreaden, S.W. Morton, K.E. Shopsowitz, P.T. Hammond, J.A. Johnson, A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin, J. Am. Chem. Soc. 136 (2014) 5896–5899.
    [14] N.U. Deshpande, M. Jayakannan, Cisplatin-stitched polysaccharide vesicles for synergistic cancer therapy of triple antagonistic drugs, Biomacromolecules 18 (2017) 113–126. [15] X. Zhang, L. Li, C. Li, H. Zheng, H. Song, F. Xiong, T. Qiu, J. Yang, Cisplatin-crosslinked glutathione-sensitive Actinomycin D loaded with doxorubicin for combination and targeted therapy of tumors, Carbohydr. Polym. 155 (2017) 407–415.
    [20] Q. Zhong, S.R.P. da Rocha, Poly(amidoamine) dendrimer-doxorubicin conjugates: vitro characteristics and pseudosolution formulation in pressurized metered-dose inhalers, Mol. Pharmaceut. 13 (2016) 1058–1072. 
    [32] S.H. Chiou, W.T. Wu, Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups, Biomaterials 25 (2004) 197–204. [33] B. Surnar, K. Sharma, M. Jayakannan, Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells, Nanoscale 7 (2015) 17964–17979. [34] T.C. Chou, Drug combination studies and their synergy quantification using the chou-talalay method, Cancer Res. 70 (2010) 440–446. [35] S.P. Singh, M. Sharma, P.K. Gupta, Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells, Int. J. Biol. Macromol. 74 (2015) 162–170. [36] K.M. Kitchens, R.B. Kolhatkar, P.W. Swaan, H. Ghandehari, Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells, Mol. Pharmaceutics 5 (2008) 364–369. [37]
    [42] B. Surnar, M. Jayakannan, Triple block nanocarrier platform for synergistic cancer therapy of antagonistic drugs, Biomacromolecules 17 (2016) 4075– 4085.
    J. Correia, Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy, Carbohydr. Polym. 200 (2018) 93–99. [46] T.A. Debele, L.Y. Yu, C.S. Yang, Y.A. Shen, C.L. Lo, pH- and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells, Biomacromolecules 19 (2018) 3725–3737.
    [60] Z. Wang, S. Sau, H.O. Alsaab, A.K. Iyer, CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer, Nanomed. Nanotechnol. Biol. Med. 14 (2018) 1441–1454.
    Contents lists available at ScienceDirect
    Journal of Drug Delivery Science and Technology
    journal homepage:
    Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells 
    Xiaodong Xu, An Liu, Yuchao Bai, Yinan Li, Chuanmin Zhang, Shaohui Cui, Yongzhe Piao, Shubiao Zhang∗
    Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China